Bill Gropp and Rusty Lusk

(other team members: Ralph Butler, Rob Latham, David Ashton,
Brian Toonen, Rob Ross, Rajeev Thakur, Anthony Chan)

Mathematics and Computer Science Division

Argonne National Laboratory SR
{gropp,lusk}@mcs.anl.gov A

Outline

« Why MPI on BG/L?
e Challenges for MPI implementations provided by BG/L

« MPICH
 The Abstract Device Approach to MPI implementation
 MPICH-2 and scalability
« Early results of IBM/Argonne Collaboration
« Scalable Process Management
« MPD and the SciDAC Scalable Systems Software Project
 MPI/ Process Manager Interface
« MPD and LoadLeveler on BG-L
« Early results of IBM/Argonne Collaboration
e Conclusion

« BG/L will provide at least one convenient and familiar programming
and job scheduling environment

I'I'!CS Argonne National Laboratory + University of Chicago

IBM Collaborators

T. J. Watson

 Jose Moreira
 Gheorghe Almasi
e Silvius Rus

Haifa

o Edi Shmueli

e Yariv Aridor
 Tamar Domany
e Yosef Moatti

I'I'!CS Argonne National Laboratory + University of Chicago

why Have MPI on BG/L?

 BG/L does support MPI model

« Separate address spaces (though small) for separate processes

e Vast number of parallel applications ready to run, or at
least ready to begin work on

e No barrier at programming model level (familiar message-
passing model)

e No barrier at language level (C, Fortran, C++, Fortran 90)
* No barrier at communication library level (MPICH)
 Memory requirement barriers likely at data/process level
« Scalability barriers likely at algorithm level

« Demonstration of general purpose nature of machine
 |f MPI can be implemented, so can anything else

I'HCS Argonne National Laboratory + University of Chicago

Challenges for an MPI Implementation on
BG/L

« Small memory footprint (fingerprint?) per MPI process

« Scalabllity of data structures
e Local size must be independent of total number of processes
« Buffer management

« Scalability of algorithms

* Must take advantage of BG/L hardware support, especially for
collective operations

* MPI topology routines will become more important
« Scalability of process manager interactions
* Interaction with MPI library

e Interaction with user

« Convenient familiar direct interface to process manager (mpirun,
mpiexec) or to batch scheduler (LoadLeveler)

I'I'!CS Argonne National Laboratory + University of Chicago

MPICH

 Goals
o Supply research vehicle for MPI implementation issues
* Promote standard programming model for users

* Provide vendors and others with starting point for specialized MPI
Implementations (both commercial and research)

* Architected to support replacement of components

e MPICH-1
* Began during MPI standardization process
e Current version 1.2.4, 2500 downloads/month
o Complete implementation of MPI-1.2, plus I/O from MPI-2
« Basis of many research and vendor implementations
* MPICH-GM from Myrinet
 MPI on ASCI Red (scalable to 3000+ nodes)
« Early Cray, Meiko, SGI, HP/Compaq, NEC, other implementations
* Research groups experimenting with lower levels
* Windows version
“'!GS Argonne National Laboratory + University of Chicago

MPICH-2

Original goals of MPICH, plus

« Scalabllity to 100,000 processes

Improved performance in multiple areas

Portability to new interconnects

Thread safety

Full MPI-2 Standard (I/0, RMA, dynamic processes, more)

Not yet released
« Detailed design complete and publicly available

« Core functionality (point-to-point and collective operations) from
MPI-1 complete

 Early performance results
 MPI-1 part to be released this fall

“'!CS Argonne National Laboratory + University of Chicago

Structure of MPICH-2

MPICH-2

ADI-3

Multi-
Method

Channel
Interface

TCP

ADIO

Existing parallel
file systems

Myrinet,

' Other NIC |

Argonne National Laboratory + University of Chicago

PVES

Existing

In Progress

The Abstract Device Interface

« Key to Performance and Portability
« MPICH-2 based on 3"-generation ADI design (ADI-3)
 Research Topics

Combining performance with portability
Latency reduction
Multi-method
Thread safety
High-performance MPI datatype processing
Interaction with process management, MPI topology routines
Multiple approaches to collective operations

« (For example, need not be in terms of point-to-point operations)
Sophisticated implementation of remote-memory operations
Dealing with faults

“'!CS Argonne National Laboratory + University of Chicago

Possible Implementations of the ADI

« The “Channel” device
« Small number of functions
« Straightforward to implement
« Sacrifices some opportunities for optimization
e Current approach for BG/L

e The “Multimethod” device

» Allows mixing of communication methods

 TCP, Shared memory, NIC-based (Myrinet, Infiniband, others)
 Made more difficult by MPI's “ANY_SOURCE” in MPI_Recv
* Intermethod interface by which new methods many be added

 The “Custom” device
e Specialized to a particular environment
» Usable by vendors (e.g., Myricom, who have studied ADI-3)

e Optimum performance
 Under discussion for BG/L

“'!CS Argonne National Laboratory + University of Chicago

10

ADI Status and Plans

e Status
e TCP implementation of the CH3 implementation of ADI-3 done
e Multimethod implementation of ADI-3 under way
« Both faster than in MPICH-1 (see following charts)

* Plans
o Complete implementation of multimethod device

 Tune and port to other environments (shared memory,
Infiniband)

e Continued vendor collaboration
* Myricom plans to implement ADI-3
e Current discussions with IBM on ADI/CH interface for BG/L
 Collaborations with multiple Infiniband vendors in progress

H'IGS Argonne National Laboratory + University of Chicago

11

An Example: CH3 Implementation over TCP

Cnmblned Send Lists . Combined Beoy. Liats, .
F’&ndlng Fecus

L e Hms

Puoint to point
Communicatian

Active Feq

= Becy Agent
; Lear
kdem

Local Completion
=AM Aqoent
___________________ Communication T ______
FMA Agent
 }
L
y |Mem Alloc
-

Ll=ar Mem

» Pollable and active-message data paths
* RMA Path

I'“CS Argonne National Laboratory + University of Chicago

12

Early Results on Channel/TCP Device

Small Message Latency

300.00

250.00

200.00 - /

0 . /,,//1/' Bandwidth
o 150.00
ETT M

100.00

0.00 : : : : : : : : /

0 500 1000 1500 2000 2500 3000 3500 4000 /
Message size (bytes) /
/_r
—e— Raw TCP —=— MPICH-chp4 MPICH2-ch3:tcp ‘ ’\5
UUUUU { ‘J_JJO"M
OOO EA - S VS L

T T T T
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Message Size (bytes)

|—+—RawTCP —=— MPICH-chp4 MPICH2-ch3:tcp |

e Conclusion: little added overhead over low-level communication
* But will become more critical with high-performance network

I'“CS Argonne National Laboratory + University of Chicago 13

BG/L and the MPICHZ2 Architecture

Interface

Implementation

Message Passing Interface

Types, key values
MPI notion of requests

A 4

Abstract Device Interface

Transform to
MPID pt2pt ops <

A 4

Channel Interface

CH3 Request

progress engine

Special opportunities:

» collective bypass

» scalable buffer mgmnt
 out-of-order network

T

TCP/IP BG/L Torus

I'WCS Argonne National Laboratory + University of Chicago

BG/L Tree
BG/L Gl

14

MPICH?2

BG/L software

’

\
-

\

USER } ‘

|
|

MPlI _Send
1L MPl _Bcast
MPI }
1L — MPI D_Send
Abstract Device Interface/MPID }
—
ﬁ CH Wite

Channel Interface/CH3 }

iI/J

Channel Wite

Transport: Torus Message Layer }

ﬁ/

Tor us_Send

|
|
|
|
|

| f pdux()
sf pdx()

Torus Packet Layer }
—
Torus hardware }

ADI-3
Impl.

Channel
Impl.

Some Questions That You Are About
to Ask

* Qut-of-order delivery of packets in the network
« Channel device enhanced to simplify support
 Few MPI communications require ordering; channel supports ordering
of message headers to enable message tracing tools such as
Jumpshot
* Implementation of collectives without MPI point-to-point
(e.g., using the other network)

* Improved version of mechanism used in MPICH-1 (introduced for the
Meiko) allows each collective operation to use special routines on a
communicator-by-communicator basis

e Scalable eager buffer and connection management

« Dynamic buffer allocation and connection management is consistent
with the ADI design (virtual connection table, currently an array, can be
replaced with a sparse array).

e Polling and non-polling
» Design supports both. Neither is always best.
I'HCS Argonne National Laboratory + University of Chicago 16

Some More Questions

* Thread safety

« Careful use of atomic operations avoids locks in many cases. Both
configure-time and runtime control of the level of thread safety. All
versions support OpenMP-style loop parallelism

Process(or) topology

* Interface through MPI_Cart_create and MPI_Graph_create

RMA (one-sided)

* Design uses operation aggregation to eliminate extra operations and
access windows to eliminate serialization present in other
implementations of MPI RMA

Rendezvous optimizations

« Single communication method case can use an “unexpected receive”
approach, already used in some prototype MPI implementations, to
avoid one handshake message

“'!CS Argonne National Laboratory + University of Chicago

17

Another Question

 How to best use the second CPU?
e Multiple modes possible
« 2" CPU idle (“heater” mode)

» 2"d CPU runs 2" thread in same MPI process (“symmetric”
mode)

— At least initially
— Exploring using for 2" MPI process (“virtual node” mode)
« 2" CPU acts as communication co-processor
— Allows true overlap of computation and communication
— Allows peak performance
* “middle packet” optimization
e Current plan: support all modes

I‘I‘IfCS Argonne National Laboratory + University of Chicago 18

MP

| in BG/L: Using the 2" CPU

* Processing modes: « Compute processor:
* heater mode e post, allocate, match graduate
e symmetric MPI requests
e 1 MPI rank per ASIC » progress at channel protocol
level

e communication co-processor

« Comm. processor:
 progress at transport level
* packets
° messages

M

by compute processor

Ground Rule #1:

Pl primitives are executed

mes

Argonne National Laboratory + University of Chicago

19

Communication co-processor

» co-processor looks like a big

virtual torus device
+ high performance
+ no coherency problem
+ compatible Computation

+ perfect for a first cut processor

- latency
- can do better

MPI
MPID
CH3

L3 cache virtua FIFO I

processor

n‘IfCS Argonne National Laboratory + University of Chicago

Comm real FIFOs

20

“Middle packet” optimization

» aligned packets of
matched/allocated
requests

e Coprocessor streams
to/from request buffers

+ truly O-copy

+ good latency

+ true comm. overlap

- needs co-ordination

- fragile

- only for aligned packets

Computation
processor

compute cp

5. announce

MPI buffer (DDR memory)

4. invalidate
3. flush

2. recognize

/

K
compm%

Comm
Drocessor real FIFOs

1. setup

Argonne National Laboratory + University of Chicago 21

Status of BG/L MPI Implementation
Today

 Running (!) in
 Emulation
 native Linux/IA32
« 2:1 slowdown
« Simulation
e Linux/bgl si m
« ~103 slowdown
 Message Layer supports CH3 “eager protocol”
* Does not yet provide correct inter-message ordering
* Does not implement optimistic error control

* Does not yet have specialized collective operations
 MPICH-2 does not yet have all of MPI, but:

* NAS parallel benchmarks
e experiments on 2 to 4 processors

“'!CS Argonne National Laboratory + University of Chicago

22

Process Manager Research Issues

|dentification of proper process manager functions

o Starting (with arguments and environment), terminating, signaling,
handling stdio, ...

Interface between process manager and communication library
* Process placement and rank assignment
* Dynamic connection establishment
 MPI-2 functionality: Spawn, Connect, Accept, Singleton Init

Interface between process manager and rest of system software
e Cannot be separated from system software architecture in general

* Process manager is important component of component-based
architecture for system software, communicating with multiple other

components
Scalability
* A problem even on existing large systems
 BGIJ/L presents new challenges

I'I'!CS Argonne National Laboratory + University of Chicago 23

Process Manager Research at ANL

« MPD — prototype process management system

« Original Motivation: faster startup of interactive
MPICH programs

« Evolved to explore general process management

Issues, especially in the area of communication
between process manager and parallel library

« Laid foundation for scalable system software research
In general
« MPD-1 is part of current MPICH distribution

 Much faster than earlier schemes
 Manages stdio scalably
e Tool-friendly (e.g. supports TotalView)

I'“CS Argonne National Laboratory + University of Chicago 24

Reqguirements on Process Manager
from Message-Passing Library

 Individual process requirements

« Same as for sequential job

 To be brought into existence
e To receive command-line arguments

e To be able to access environment variables

* Requirements derived from being part of a parallel job
e Find size of job: MPI_Comm_size(MPI_COMM_WORLD, &size)
o |dentify self: MPI_Comm_rank(MPI_COMM_WORLD, &myrank)

* Find out how to contact other processes: MPI_Send(...)

I'I'!CS Argonne National Laboratory + University of Chicago 25

Finding the Other Processes

* Need to identify one or several ways of making
contact
« Shared memory (queue pointer)
 TCP (host and port for connect)
e Other network addressing mechanisms (Infiniband)
* (X,y,z) torus coordinates in BG/L

« Depends on target process

* Only process manager knows where other processes
are

* Even process manager might not know everything
necessary (e.g. dynamically obtained port)

* “Business Card” approach

I'“CS Argonne National Laboratory + University of Chicago 26

Approach

« Define interface from parallel library (or application) to process
manager

Allows multiple implementations
MPD is a scalable implementation (used in MPICH ch_p4mpd device)

 PMI (Process Manager Interface)

Conceptually: access to spaces of key=value pairs

No reserved keys

Allows very general use

Basic part: for MPI-1, other simple message-passing libraries

Advanced part: multiple keyval spaces for MPI-2 functionality, grid
software

* Provide scalable PMI implementation with fast process startup
* Let others do so too

I‘HCS Argonne National Laboratory + University of Chicago 27

The PMI Interface

 PMI_Init
« PMI_Get_size
« PMI_Get rank
« PMI_Put

e PMI Get

« PMI _Fence
« PMI_End

* More functions for managing multiple keyval spaces
 Needed to support MPI-2, grid applications

I'“CS Argonne National Laboratory + University of Chicago

MPD

Architecture of MPD:

)

Scheduler > mpd's
‘\ managers
mpirun
application
processes

“'!CS Argonne National Laboratory + University of Chicago 29

Interesting Features

o Security

« “Challenge-response” system, using passwords in protected
files and encryption of random numbers

e Speed not important since daemon startup is separate from job
startup

 Fault Tolerance

 When a daemon dies, this is detected and the ring is reknit =>
minimal fault tolerance

« New daemon can be inserted in ring

e Signals
e Signals can be delivered to clients by their managers

“'!CS Argonne National Laboratory + University of Chicago 30

More Interesting Features

e Uses of signal delivery

« signals delivered to a job-starting console process are
propagated to the clients

e SO can suspend, resume, or kill an mpirun

e one client can signal another
e can be used in setting up connections dynamically

e a separate console process can signal currently running jobs
 can be used to implement a primitive gang scheduler

« Mpirun also represents parallel job in other ways
totalview mpirun —np 32 a.out
runs 32-process job under TotalView control

“'!CS Argonne National Laboratory + University of Chicago 31

More Interesting Features

« Support for parallel libraries

e Implements the PMI process manager interface, used by
MPICH.

e groups, put, get, fence, spawn
« simple distributed database maintained in the managers
 solves “pre-communication” problem of startup

« makes MPD independent from MPICH while still providing
needed features

n'!CS Argonne National Laboratory + University of Chicago

32

Handling Standard 1/O

 Managers capture st dout and
st derr (separately) from their clients 4 ing

« Managers forward st dout and
st derr (separately) up a pair of
binary trees to the console, optionally |5 iee
adding a rank identifier as line label —

e Console’s st di nis delivered to manager
st di n of client O by default, but can g
be controlled to broadcast or go to
specific client

client

I'“CS Argonne National Laboratory + University of Chicago 33

The Scalable Systems Software
SClDAC Project

Multiple Institutions (most national labs, plus NCSA)

« Targeting systems software for large systems, particularly
clusters

« Component architecture
e Currently using XML for inter-component communication

 Status

« Early demos; watch for more at SC’'02, some components in use at
Argonne on Chiba City cluster

* Detailed XML interface to PM component, implemented by MPD
« One powerful effect: forcing rigorous (and aggressive) definition

of what a process manager should do and what should be
encapsulated in other components

« Start (with arguments and environment variables), terminate, cleanup
« Signal delivery
* Interactive support (e.g. for debugging) — requires stdio management

I'HCS Argonne National Laboratory + University of Chicago 34

What Does This Have to Do with MPI
on BGL?

MPI library needs PMI interface implementation

 LoadLeveler desirable as scheduler
e [t exists!
* Provides sophisticated scheduling capabilities
* Familiar to large class of users
 LoadLeveler can be used as scheduling component in Scalable
System Software Center sense
* Interface to process manager well defined
» Interface has needed features
« MPD-based process manager ready for use

* Currently collaborating with IBM/Haifa group on this approach to
scheduling and process management for BG/L

« LoadLeveler only one option for scheduling component

» Clear definitions of interfaces will support use of other schedulers
* (e.g., SLURM)

I‘HCS Argonne National Laboratory + University of Chicago 35

MPD Supports Multiple Styles of
Process Management

e Scheduler can compose and execute mpirun command that
communicates with MPD ring

» Easy to write BG/L-specific mpirun scripts
 (e.g. to specify topology information)
e Scheduler can communicate directly with mpd ring
« Scheduler, other components of system software can

communicate with persistent process manager component,
using public XML interface

e Scheduler can allocate nodes for interactive use and user can
run mpirun interactively

* (e.g. for debugging)

« User can set up own MPD ring in user mode
* (e.g. for development)

I'“CS Argonne National Laboratory + University of Chicago 36

LoadLeveler and MPD for BG/L

Goals

* Provide functional and familiar job submission, scheduling, and
process management environment on BG/L

« Change existing code base (LL, MPICH, MPD) as little as possible

e Current Plan: Run MPD’s as root and have LL submit job to
MPD'’s to start user job as user

* LL can schedule set of nodes for user to use interactively; then
user can use mpirun to run series of short interactive jobs on
subsets of allocated nodes

 Ensure that user can only use scheduled nodes

« Build foundation for development of other scheduling and
process management approaches

I“CS Argonne National Laboratory + University of Chicago 37

BG/L Architecture

« Example : 2 I/O nodes, each with 64 compute nodes

Linux Linux
Machine Machine
A B

e
w02 ~

e
MPI task O{ =

T 4 \- — \ /m
MPI task 1 me task O fMPI task 1 ’

THGS Argonne National Laboratory + University of Chicago 38

C-node #0
C-node #23

A\Y

—

Proxy processes

e A proxy process (Linux process) Is created for
each MPI task

e The task is not visible to the operating-system
scheduler

* The proxy interfaces between the operating-

system and the task, passing signals, messages
etc...

o |t
M

c M

Drovio
P| tas

PD wi

es transparent communication with the
K

| start these proxy processes

 Need to be able to pass separate arguments to each

mecs

Argonne National Laboratory + University of Chicago 39

Running the Proxies on the Linux
Nodes

—
LL daemon
> Run as root
mpd mpd
_/
= 1173

\
Run as
l I\ l l l
proxy cpi 5 ~/
Proxies still

proxy cpi 6 under discussion

n‘IfCS Argonne National Laboratory + University of Chicago 40

Conclusion

« IBM and ANL are collaborating in two related areas to
iImprove the usabillity of BG/L

e MPI implementation
e Process management

* In each case timing seemed to be perfect to connect
existing research projects to new scalabllity
challenges

« Early results are promising

I'“CS Argonne National Laboratory + University of Chicago

41

